On the log-convexity of combinatorial sequences

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the log-convexity of combinatorial sequences

Here presented is a survey for the log-convexity of some famous combinatorial sequences. We develop techniques for dealing with the log-convexity of sequences satisfying a three-term recurrence. We also introduce the concept of q-log-convexity and establish the link with linear transformations preserving the log-convexity. MSC: 05A20; 11B73; 11B83; 11B37

متن کامل

Log–convexity of Combinatorial Sequences from Their Convexity

A sequence (xn)n 0 of positive real numbers is log-convex if the inequality xn xn−1xn+1 is valid for all n 1 . We show here how the problem of establishing the log-convexity of a given combinatorial sequence can be reduced to examining the ordinary convexity of related sequences. The new method is then used to prove that the sequence of Motzkin numbers is log-convex.

متن کامل

A Criterion for the Log-Convexity of Combinatorial Sequences

Recently, Došlić, and Liu and Wang developed techniques for dealing with the log-convexity of sequences. In this paper, we present a criterion for the log-convexity of some combinatorial sequences. In order to prove the log-convexity of a sequence satisfying a three-term recurrence, by our method, it suffices to compute a constant number of terms at the beginning of the sequence. For example, i...

متن کامل

Log-balanced combinatorial sequences

We consider log-convex sequences that satisfy an additional constraint imposed on their rate of growth. We call such sequences log-balanced. It is shown that all such sequences satisfy a pair of double inequalities. Sufficient conditions for log-balancedness are given for the case when the sequence satisfies a two(or more-) term linear recurrence. It is shown that many combinatorially interesti...

متن کامل

A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers

The Catalan-like numbers cn,0, defined by cn+1,k = rk−1cn,k−1 + skcn,k + tk+1cn,k+1 for n, k ≥ 0, c0,0 = 1, c0,k = 0 for k 6= 0, unify a substantial amount of well-known counting coefficients. Using an algebraic approach, Zhu showed that the sequence (cn,0)n≥0 is log-convex if rktk+1 ≤ sksk+1 for all k ≥ 0. Here we give a combinatorial proof of this result from the point of view of weighted Mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2007

ISSN: 0196-8858

DOI: 10.1016/j.aam.2006.11.002